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INTRODUCTION: Single-cell RNA sequencing
has demonstrated that both stable cell types
and transient cell states can be discovered and
defined by transcriptomes. In situ transcrip-
tomic methods can map both RNA quantity
and position; however, it remains challenging
to simultaneously satisfy key technological re-
quirements such as efficiency, signal intensity,
accuracy, scalability to large gene numbers, and
applicability to three-dimensional (3D) volumes.
Well-established single-molecule fluorescence
in situ hybridization (FISH) approaches (such
as MERFISH and seqFISH) have high detection
efficiency but require long RNA species (more
than 1000 nucelotides) and yield lower intensity
than that of enzymatic amplification methods
(tens versus thousands of fluorophores per RNA

molecule). Other pioneering in situ sequencing
methods (via padlock probes and fluorescent
in situ sequencing) use enzymatic amplification,
thus achieving high intensity but with room
to improve on efficiency.

RATIONALE:We have developed, validated,
and applied STARmap (spatially-resolved tran-
script amplicon readout mapping). STARmap
begins with labeling of cellular RNAs by pairs
of DNA probes followed by enzymatic amplifica-
tion so as to produce a DNA nanoball (amplicon),
which eliminates background caused by mis-
labeling of single probes. Tissue can then be
transformed into a 3D hydrogel DNA chip by
anchoring DNA amplicons via an in situ–
synthesized polymer network and removing

proteins and lipids. This form of hydrogel-
tissue chemistry replots amplicons onto an op-
tically transparent hydrogel coordinate system;
then, to identify and quantify RNA species-
abundance manifested by DNA amplicons, the
identity of each species is encoded as a five-base
barcode and read out by means of an in situ
sequencingmethod that decodes DNA sequence
in multicolor fluorescence. Using a new two-base
sequencing scheme (SEDAL), STARmap was
found to simultaneously detect more than 1000
genes over six imaging cycles, in which sequenc-
ing errors in any cycle cause misdecoding and
are effectively rejected.

RESULTS:We began by (i) detecting and quan-
tifying a focused 160-gene set (including cell
typemarkers and activity-regulated genes) simul-
taneously in mouse primary visual cortex; (ii)

clustering resulting per-cell
gene expression patterns
into a dozen distinct inhib-
itory, excitatory, and non-
neuronal cell types; and
(iii) mapping the spatial
distribution of all of these

cell types across layers of cortex. For validation,
per-cell-type gene expression was found to cor-
relate well both with in situ hybridization re-
sults and with single-cell RNA sequencing, and
widespread up-regulation of activity-regulated
genes was observed in response to visual stim-
ulation. We next applied STARmap to a higher
cognitive area (the medial prefrontal cortex) and
discovered a more complex distribution of cell
types. Last, we extended STARmap tomuch larger
numbers of genes and spatial scales; we mea-
sured 1020 genes simultaneously in sections—
obtaining results concordant with the 160-gene
set—and measured 28 genes across millimeter-
scale volumes encompassing ~30,000 cells, re-
vealing 3D patterning principles that jointly
characterize a broad and diverse spectrum of
cell types.

CONCLUSION: STARmap combines hydrogel-
tissue chemistry and in situ DNA sequencing
to achieve intact-tissue single-cell measurement
of expression of more than a thousand genes.
In the future, combining this intact-system gene
expression measurement with complementary
cellular-resolution methodologies (with which
STARmap is designed to be compatible)—
including in vivo activity recording, optogenetic
causal tests, and anatomical connectivity in the
same cells—will help bridge molecular, cellular,
and circuit scales of neuroscience.▪
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STARmap for 3D transcriptome imaging and molecular cell typing. STARmap is an in situ
RNA-sequencing technology that transforms intact tissue into a 3D hydrogel-tissue hybrid and
measures spatially resolved single-cell transcriptomes in situ. Error- and background-reduction
mechanisms are implemented at multiple layers, enabling precise RNA quantification, spatially
resolved cell typing, scalability to large gene numbers, and 3D mapping of tissue architecture.
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Retrieving high-content gene-expression information while retaining three-dimensional (3D)
positional anatomyat cellular resolution has been difficult, limiting integrative understanding of
structure and function in complex biological tissues.We developed and applied a technology
for 3D intact-tissue RNA sequencing, termed STARmap (spatially-resolved transcript amplicon
readout mapping), which integrates hydrogel-tissue chemistry, targeted signal amplification,
and in situ sequencing.The capabilities of STARmapwere tested bymapping 160 to 1020 genes
simultaneously in sections of mouse brain at single-cell resolution with high efficiency,
accuracy, and reproducibility. Moving to thick tissue blocks, we observed a molecularly defined
gradient distribution of excitatory-neuron subtypes across cubic millimeter–scale volumes
(>30,000 cells) and a short-range 3D self-clustering in many inhibitory-neuron subtypes that
could be identified and described with 3D STARmap.

I
n biological tissues, diversity of function
arises from diversity of form—in part, via the
complexity of cell-specific gene expression,
which defines the distinct three-dimensional
(3D) molecular anatomy and cellular proper-

ties of each tissue. In situ transcriptomic tools
for the spatial mapping of gene expression with
subcellular resolution have emerged that may
be applicable to probing these tissue structure–
function relationships, including both multiplexed
in situ RNA hybridization and in situ RNA se-
quencing (1–10). Current in situ sequencing ap-
proaches face the challenge of implementing
enzymatic reactions in the dense, complex tissue
environment and currently suffer from low efficien-
cy (2), but the potential value of such intact-tissue
sequencing could be enormous; in comparison
with hybridization-based multiplexing/readout,
which uses multiple polynucleotide probes to
encode gene identity (3–5), sequencing operates
with single-nucleotide resolution and thus inher-
ently provides greater information. In addition,

in situ sequencing methods typically use signal
amplification, which is important for the detec-
tion of short transcripts (such as neuropeptides)
and for high-quality imaging in thick tissue
blocks. However, current sequencing methods
have not yet been successfully applied to 3D
volumes of intact tissue because of fundamental
limitations in requisite sensitivity, fidelity, and
scalability for throughput in tissues such as the
mammalian brain.
Hydrogels have been widely used for extra-

cellular 3D scaffolding in applications across
biology and medicine (11–13). Recently developed
hydrogel-tissue chemistry (HTC) methodologies
(14), beginning with CLARITY (15), physically
link in situ–synthesized polymers with selected
intracellular biomolecules. This process transforms
the tissue, from within its constituent cells, into
a new state suitable for high-resolution volu-
metric imaging and analysis compatible with
many kinds of molecular phenotyping for pro-
teins, nucleic acids, and other targets (15). HTC-
based hydrogel-embedding strategies have been
extended to nucleic acid analyses in the form
of in situ hybridization for RNA (16–19), but
these have not yet been extended to in situ RNA
sequencing—which would have the potential to
reveal the full molecular complexity of the tran-
scriptome. In nontissue environments, however,
purely synthetic hydrogels have been used to
accommodate enzymatic reactions that include
DNA sequencing (20), and if biological tissue
could be converted into a hydrogel-embedded
form compatible with creation, retention, and
functional presentation of RNA-derived or hybri-
dized complementary DNA (cDNA), it might be

possible to perform 3D in situ sequencing with-
in such a tissue-hydrogel formulation—leveraging
the crucial attendant properties of optical trans-
parency, reduced background, elevated diffusion
rate, and greater mechanical stability. We achieved
this goal with the development and application
of a sequencing-based method (spatially-resolved
transcript amplicon readoutmapping, or STARmap)
for targeted 3D in situ transcriptomics in intact
tissue (Fig. 1A); using STARmap, we were able
to identify organizational principles of a full spec-
trum of cell types, which would not have been
otherwise accessible for identification in the adult
mammalian brain.

Results
Design and validation of
STARmap principles

One component is an efficient approach for in
situ amplification of a library of cDNA probes
hybridized with cellular RNAs (this approach
is termed SNAIL, for specific amplification of
nucleic acids via intramolecular ligation). Reverse
transcription may be the major efficiency-limiting
step for in situ sequencing (7, 21), and SNAIL
bypasses this step with a pair of primer and
padlock probes (fig. S1A) designed so that only
when both probes hybridize to the same RNA
molecule can the padlock probe be circularized
and rolling-circle-amplified to generate a DNA
nanoball (amplicon) that contains multiple copies
of the cDNA probes (Fig. 1, A to D). This mech-
anism ensures target-specific signal amplification
and excludes noise that invariably otherwise
arises from nonspecific hybridization of single
probes. The outcome includes much higher ab-
solute intensity and signal-to-noise ratio (SNR)
as compared with those of commercial single-
molecule fluorescent in situ hybridization (smFISH)
probes (fig. S1, B to F) and substantial improve-
ment of detection efficiency (comparable with that
of single-cell RNA sequencing), with simplified
experimental procedures compared with previous
in situ RNA sequencing methods (fig. S1, G to I).
To enable cDNA amplicon embedding in the

tissue-hydrogel setting, amine-modified nucleo-
tides were spiked into the rolling-circle amplifi-
cation reaction, functionalized with an acrylamide
moiety by using acrylic acidN-hydroxysuccinimide
esters, and copolymerized with acrylamide mono-
mers so as to form a distinct kind of hydrogel-
DNA amplicon network (Fig. 1A and fig. S2A).
The resulting tissue-hydrogel was then subjected
to protein digestion and lipid removal in order to
enhance transparency (fig. S2, B to E). This de-
sign chemistry dictates that amplicons are co-
valently linked with the hydrogel network, and
such cross-linking is essential to maintain the
position and integrity of the amplicons through
many cycles of detection (fig. S2, F to H).
A five-base barcode (library size of 1024) was

designed and built into each padlock probe as a
gene-unique identifier to be sequenced, thus
enabling multiplexed gene detection (Fig. 1A).
Sequencing-by-synthesis paradigms were avoided
because these require elevated reaction tem-
peratures, which in turn are problematic for
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Fig. 1. STARmap principles: in situ RNA sequencing for spatial tran-
scriptomics within the 3D tissue environment. (A) STARmap overview
schematic. After brain tissue is prepared (mouse brain protocols are
available in the supplementary materials, materials and methods), the
custom SNAIL probes that encounter and hybridize to intracellular mRNAs
(dashed lines) within the intact tissue are enzymatically replicated as
cDNA amplicons. The amplicons are constructed in situ with an acrylic
acid N-hydroxysuccinimide moiety modification (blue) and then copolym-
erized with acrylamide to embed within a hydrogel network (blue wavy
lines), followed by clearance of unbound lipids and proteins (fig. S2). Each
SNAIL probe contains a gene-specific identifier segment (red) that is
read-out through in situ sequencing with two-base encoding for error
correction (SEDAL) (fig. S3). Last, highly multiplexed RNA quantification in
three dimensions reveals gene expression and cell types in space.
(B) SNAIL logic. A pair of primer and padlock probes amplifies target-
specific signals and excludes noise known to commonly arise from
nonspecific hybridization of a single probe. (C and D) Only adjacent binding
of primer and padlock probes leads to signal amplification. mRNA A

represents Gapdh, and mRNA B represents Actb. Both fluorescent images
show Gapdh (gray) mRNA and cell nuclei (blue) labeling in mouse brain
slice; there is an absence of labeling with mismatched primer and padlock
(right). Scale bar, 10 mm. (E) In situ sequencing of DNA amplicons in the
tissue-hydrogel complex via SEDAL, the sequencing-by-ligation method
devised for STARmap. For each cycle, the reading probes (gray line without
star-symbol label) contain an incrementally increasing-length run of
degenerate bases (N representing an equal mixture of A, T, C, and G) with
phosphate at the 5′ end (5′P) to set the reading position; the decoding
probes (gray line with star-symbol label) are labeled by fluorophores with
color coding for the dinucleotide at the 3′ end. Only if both probes are
perfectly complementary to the DNA template (black lower sequence) can
the two kinds of probes then be ligated to form a stable product with a
high melting temperature, allowing later imaging after unligated probes are
washed away. After each imaging cycle, probes are stripped away from
the robust tissue-hydrogel by using 60% formamide so that the next cycle
can begin. X, unknown base to be read; red underline, decoded sequence;
Ch1 to Ch4, fluorescence channels. Scale bar, 2 mm.
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Fig. 2. STARmapping cell
types in V1. (A) Experimental
design. Mice were dark housed,
before sacrifice, for 4 days
and then either kept in the dark
or exposed to light for 1 hour.
V1 was coronally sectioned, and
RNAs of 112 cell type markers
and 48 activity-regulated genes
were quantified by means of
STARmap. (B) Raw fluores-
cence images of in-process
STARmap with the full view of
cycle 1 (top) and zoomed views
across all six cycles (bottom).
Full field: 1.4 by 0.3 mm, scale
bar, 100 mm; zoomed region:
11.78 by 11.78 mm, scale bar,
2 mm; Channel, color code for
the four fluorescence channels;
L1 to L6, the six neocortical
layers; cc, corpus callosum;
HPC, hippocampus. (C) Histo-
grams. Shown are detected
reads (DNA amplicons) per cell
(left), and genes per cell
(right). (D) Quantitative
reproducibility of biological
replicates, whether in the
light or dark condition: log2
(amplicon quantity) for
160 genes across the whole
imaging region plotted. Rep1,
expression value in first
replicate; rep2, expression
value in second replicate.
(E) Validation of STARmap.
(Left) in situ images from Allen
Institute of Brain Science
(AIBS). (Right) RNA pattern
of individual genes extracted
from 160-gene STARmap,
which reliably reproduced the
spatial gene expression pattern
from AIBS. (F) Uniform
manifold approximation plot
(UMAP), a nonlinear dimen-
sionality reduction technique
used to visualize the similarity
of cell transcriptomes in two
dimensions, showing consistent
clustering of major cell types
across 3142 cells pooled from
four biological replicates:
2199 excitatory neurons,
324 inhibitory neurons, and
619 non-neuronal cells.
(G) Gene expression heatmap
for 112 cell-type markers
aligned with each cell cluster, showing clustering by inhibitory, excitatory, or
non-neuronal cell types. Expression for each gene is z-scored across all genes
in each cell. (H) Representative cell-resolved spatial map in neocortex and
beyond. Cell types are color-coded as in (F). (I to N) Clustering of excitatory
and inhibitory subtypes. [(I) and (L)] UMAP plots, [(J) and (M)] bar plots of
representative genes (mean ± 95% confidence interval expression across all
cells in that cluster, with each bar scaled to the maximummean expression
across all clusters), and [(K) and (N)] in situ spatial distribution of [(I) to (K)]

excitatory and [(L) to (N)] inhibitory neurons.The number of cells in each
cluster was as follows: eL2/3, 589; eL4, 649; eL5, 393; eL6, 368; PVneurons,
111; VIP neurons, 46; SSTneurons, 46; and NPYneurons, 56. Inclusion of
cells in clusters was guided entirely by amplicon representation in each
cell without using spatial information; excitatory cell clusters were then
named according to the spatial layering observed for that cluster, whereas
inhibitory cell clusters were named according to the dominant cell-type
amplicon based on the strong segregation of amplicon markers.
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high-resolution imaging and sample stability (16)
in comparison with sequencing-by-ligationmethods
that can be implemented at room temperature.
However, none of the reported or commercially
available sequencing-by-ligation methods exhibit
the necessary SNR or accuracy for this challeng-
ing intact-tissue application: Supported Oligo
Ligation Detection (SOLiD) sequencing causes
strong background fluorescence in biological
samples (10), whereas combinatorial probe
anchor ligation (cPAL) sequencing (22) lacks
an error-rejection mechanism (fig. S3). For
this reason, an approach we term sequencing
with error-reduction by dynamic annealing and
ligation (SEDAL) was devised specifically for
STARmap (fig. S3).
SEDAL uses two kinds of short, degenerate

probes: reading probes to decode bases, and fluo-
rescence probes to transduce decoded sequence
information into fluorescence signals. The two
short probes only transiently bind to the target
DNA and ligate to form a stable product for
imaging only when a perfect match occurs; after
each cycle corresponding to a base readout, the
fluorescent products are stripped with form-
amide, which eliminates error accumulation
as sequencing proceeds (Fig. 1E and fig. S3B).
In contrast to SOLiD, SEDAL exhibits minimal
background (fig. S3, C to F). A two-base encod-

ing scheme was designed and implemented in
order to mitigate any residual errors related to
imaging high densities of spots (fig. S3, G and
H). On the basis of a panel of four very highly
expressed test genes in mouse brain (to mimic
amplicon crowdedness as would be encountered
in highly multiplexed gene-detection), we found
that the error rate of STARmap was more than
an order of magnitude lower than prior cPAL
methods (~1.8 versus 29.4%) (fig. S3, I to L) (17).

Spatial cell typing in primary visual
cortex with 160-gene STARmapping

To test whether STARmap could deliver on the
initial goal of high-content 3D intact-tissue se-
quencing of single-cell transcriptional states with
the necessary sensitivity and accuracy, we ap-
plied STARmap to a pressing challenge in neuro-
science: detecting and classifying cell types and
corresponding tissue-organization principles
in the neocortex of the adult mouse brain. The
anatomy and function of the mouse primary
visual neocortex have been extensively studied
(23), a setting which here allows validation of
our results by comparison with prior findings
that span multiple papers, methodologies, and
data sources (but the full diversity of deeply
molecularly defined cell types within the visual
cortex has not yet been spatially resolved in a

single experiment, precluding identification of
potentially fundamental joint statistics and orga-
nizational principles across 3D volumes). Among
many examples of the experimental leverage such
information could provide, joint 3D cell-typology
mapping might be used to help decode the
spatiotemporal logic of neural activity–triggered
gene expression as a function of cell type and
spatial location.
We therefore used five-base barcoded SNAIL

probes over six rounds of in situ SEDAL sequenc-
ing in coronal mouse brain slices (Figs. 1A and
2, A and B) to survey a large but focused and
curated gene set [160 genes including 112 pu-
tative cell-type markers collated from mouse
cortical single-cell RNA sequencing (24, 25)
and 48 activity-regulated genes (ARGs) (26, 27)].
In one arm of the experiment, visually evoked
neural activity was provided to a cohort of mice
via 1 hour of light exposure after 4 days of hous-
ing in the dark; other mice were kept con-
tinuously in the dark (27, 28). Eight-mm-thick
volumes containing up to 1000 cells covering
all cortical layers were imaged. After six rounds
of sequencing, fluorescent Nissl staining was
used to segment cell bodies, allowing attribution
of amplicons to individual cells (fig. S4, A and B).
The values corresponding to amplicons-per-cell
and genes-per-cell varied substantially (Fig. 2C),
whereas the 160-gene expression pattern was
consistent between biological replicates [corre-
lation coefficient (r) = 0.94 to 0.95] (Fig. 2D),
revealing reliable detection of transcript diversity
at the single-cell level. Because only 160 genes
were encoded out of the 1024 possible barcodes
from five bases, we were able to quantify se-
quencing errors that resulted in sequences being
corrupted from the 160 true barcodes to the
864 invalid barcodes, which was remarkably
low at 1 to 4%. We found that this 160-gene
pilot faithfully reproduced the spatial distri-
bution of known cortical layer markers and in-
terneurons, illustrated here via comparison of
in situ images from paired public atlases (29)
and STARmap results (Fig. 2E).
We next performed cell classification using

expression data of the 112 cell-type markers.
First, >3000 cells pooled from four biological
replicates were clustered into three major cell
types (excitatory neurons, inhibitory neurons,
and non-neuronal cells) by using graph-based
clustering after principal-component decompo-
sition (30) and then further subclustered under
each category (Fig. 2, F to H, and fig. S4C). The
richly defined excitatory neurons segregated into
four major types (here denoted eL2/3, eL4, eL5,
and eL6) by spatial correspondence with anatomic
cortical layers and expression profiles of known
layer-specific gene markers (Fig. 2, I to K, and
fig. S5, A and B). Although spatial organiza-
tion of the four excitatory types exhibited a
layered pattern, there was extensive intermix-
ing among different cell types within each layer.
Inhibitory neurons were also clustered into four
major types, here denoted by the dominant
interneuron marker of each subtype [VIP, SST,
NPY, and PV (Pvalb)] (Fig. 2, L to N, and fig. S5,
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Fig. 3. STARmapping behavioral experience: Detecting and quantifying cell type–specific
regulation of ARGs. (A) Validation. Shown is spatial expression pattern in the visual cortex of
prototypical ARGs known as immediate early genes. Sacrifice was in darkness or after 1 hour of light
exposure. (B and C) Volcano plots of log fold-change in gene expression between light and dark
conditions in inhibitory and excitatory cell types. Genes with significantly increased or decreased
expression (false discovery rate–adjusted P < 0.05, Wilcoxon rank-sum test) are labeled in green,
and the most significantly changed genes (P < 0.05 and fold change > 2) are labeled in red. Many
ARGs showed cell-type specificity, pointing to discovery of unanticipated cell type–specific logic
of excitation-transcription coupling. (D) Violin plot of Egr2 expression by cell type. ****P < 0.0001,
n.s. not significant, Wilcoxon rank-sum test; red-labeled cell types, fold change >2.
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C and D); the VIP and NPY type were observed
to distribute more to the upper layers (L1 to
L3), whereas SST and PV types were found
more commonly in the lower layers (L4 to
L6). We also detected non-neuronal cell types,
including astrocytes, oligodendrocytes, endothe-
lial cells, and smooth muscle cells (fig. S6). The
number of major cell types illustrated here (12
in total) can be further broken down (single-cell
RNA sequencing can lead to classification into
40 or more subtypes, which is consistent with
the readily apparent heterogeneity of gene
expression within each type) (figs. S5 and S6).
With our targeted 112-gene set and at the size of
600 to 800 cells per sample, all 12 major cell
types could be reliably detected without batch

effects with highly similar spatial patterning
among four biological replicates (defined as sam-
ples prepared from different animals) (fig. S7)
and matched with published single-cell RNA se-
quencing results (fig. S8).
We next sought to take advantage of STARmap’s

quantitative capabilities at the single-cell level,
in order to test differential gene expression analy-
ses across experimental conditions, in molec-
ularly defined cell types. To this end, we assessed
visual stimulus–dependent gene expression
patterns (via 48 defined ARGs with single-cell
resolution in situ). Further developing the single-
cell RNA sequencing procedure, mouse brains
were flash-frozen with minimal handling time
after sacrifice (<5 min), for maximal preservation

of native transcriptional signatures. Consistent
with prior reports (26–28), we observed global
induction of known immediate-early genes (Fos,
Egr1, and Egr2) (Fig. 3A) in the primary visual
cortex (V1) upon 1 hour of light exposure. At
single-cell resolution, the quantitative extent (fold
change in expression) of ARG changes exhibited
striking diversity across neuronal cell types (Fig. 3,
B and C, and fig. S9) (28). In general, ARG ex-
pression programs in excitatory neurons across
different layers were highly similar, whereas
ARG expression programs in inhibitory cells ex-
hibited much more distinct cell type–specific
characteristics (fig. S9C); for example, Egr2 ex-
hibited light-induction across excitatory neurons
(Fig. 3D) but not in inhibitory neurons, whereas
Prok2 was up-regulated in Vip inhibitory neurons
(Fig. 3C) (22). Last, because neural activity can
trigger cotranscription of noncoding RNAs from
within enhancers of ARGs (26, 31), we also studied
exemplars of these enhancer RNAs (eRNAs) (here,
eRNAs 1 to 5 of the Fos gene); these transcripts,
not polyadenylated, would be very difficult to
measure with current single-cell RNA sequenc-
ing. eRNA3 was identified as the most notable
and consistent ARG marker (fig. S9B).

Comparing spatial cell-type distributions
in frontal and sensory cortices

We then investigated to what extent the cell types
of the higher cognitive cortex resemble those of
the sensory cortex, as exemplified by V1. We
applied the same 160-gene set to STARmapping
the cell populations of the medial prefrontal cor-
tex (mPFC) (Fig. 4A), which is involved in high-
level cognitive functions such as attention and
memory and is thought to be dysregulated in
major psychiatric disorders (32). We identified
15 distinct molecular cell types, including six
excitatory neuron subtypes (eL2/3, eL5-1, eL5-2,
eL5-3, eL6-1, and eL6-2, annotated by anatomic
cortical layers), five inhibitory neuron subtypes
(VIP, Reln, SST, Lhx6 and NPY, annotated by
dominant gene markers), and four non-neuronal
types (astrocytes, oligodendrocytes, endothe-
lial cells, and smooth-muscle cells) (Fig. 4B and
fig. S10).
The spatial organization of broad cell types

in mPFC resembled that of V1 with intermixed
excitatory neuronal layers and sparsely distri-
buted inhibitory neurons (Fig. 4C); however, the
nature and composition of neuronal subtypes in
mPFC and V1 strikingly differed (Fig. 4, D and
E). For excitatory subtypes, mPFC lacks eL4 (which
is consistent with previous reports) (33) and
exhibits reduced eL2/3 and vast expansion of
eL5 and eL6 compared with that of V1 (Fig. 4E).
Many new types of cell were discovered, includ-
ing three eL5 subtypes and two eL6 subtypes, as
characterized by gene markers Sema3e, Plcxd2,
Tpbg, Syt6, and Ctgf, respectively (Fig. 4D).
Substantially different tissue organization by

cell type was also observed for inhibitory sub-
clusters. Sst-, Vip-, and Npy-positive subtypes
in mPFC were represented similarly among all
inhibitory neurons compared with those in V1,
whereas Pvalb-positive cells were comparatively
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Fig. 4. STARmapping cell types and neural activity in mPFC. (A) Diagram of targeted region
(red box) containing primarily prelimbic cortex (PrL) within mPFC. (B) UMAP visualization of all
inhibitory (VIP, Reln, SST, Lhx6, and NPY), excitatory (eL2/3, eL5-1, eL5-2, eL5-3, eL6-1, and eL6-2),
and non-neuronal (Astro, Oligo, Smc, and Endo) cell types. (C) Spatial visualization of cell type layout
in mPFC, using the same color scheme as in (B). (D) Barplot of representative genes per cluster (mean ±
95% confidence interval), with each bar scaled to the maximum mean expression for that gene
across clusters. (E) Piecharts showing the relative proportion of each major and minor cell type in both
mPFC and visual cortex. (F) Violin plots of Fos gene induction in different excitatory cell types in mPFC
in response to cocaine. The mice were sacrificed after 1 hour of cocaine or saline injection. Expr,
normalized expression; n.s., not significant; *P < 0.05, ***P < 0.001, ****P < 0.0001, likelihood ratio
test. Astro, astrocytes; Oligo, oligodendrocytes; Smc, smooth muscle cells; Endo, endothelial cells.
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much sparser. In V1, Reln-positive neurons co-
exist with Sst and Npy, whereas in mPFC, these
segregate as a single cluster, with ~50% co-
marked by Ndnf; we also discovered a new in-
hibitory subtype labeled by Lhx6, which in fact
constitutes the most abundant inhibitory sub-
type in mPFC (Fig. 4E). Although the 5-HT(3A)
receptor (Htr3a) expression has been reported

in cortical inhibitory neurons (34), Htr3a has
not been ranked as a critical genetic marker of
inhibitory subtypes in V1. In mPFC, however,
we found that Htr3a distinguishably marks a
large fraction of Vip+ neurons and a subset of
Reln+ neurons (fig. S10D).
Superficial layers (L1 to L3) were found to

contain Vip, Reln, and Npy subtypes, whereas

deeper layers (L5 to L6) were found to contain
all of the inhibitory subtypes. All of the 15 cell
types with tissue-level spatial organization could
be reliably detected with STARmap across four
biological replicates (fig. S11). The capability of
STARmap for multidimensional cell typing in
mPFC was further demonstrated in the setting
of activity dependence, supporting the possibil-
ity of defining cell types in part by communica-
tion properties, including activity during behavior
(35, 36). One hour after cocaine injection (37), a
specific subpopulation of deep-layer excitatory
neurons (such as Tpbg labeled eL5-2) in mPFC
was activated compared with that in saline-injected
control mice (Fig. 4F), revealing STARmap capa-
bility for identifying functional segregation of
neuronal subtypes in mPFC.

Scaling STARmap to more than
1000 genes

To further test the scalability of STARmap, we
extended our gene list from 160 to 1020 genes,
leveraging previously published single-cell RNA
sequencing data (24). The 1020-gene set was first
validated in mouse hippocampal neuron culture,
with successful resolution of neuronal and glial
cells (fig. S12). We then probed mouse V1 neo-
cortex with the 1020-gene set in order to evaluate
performance in spatial cell typing in comparison
with that of the 160-gene set. Amplicons obtained
in the 1020-gene experiment were much denser in
cells as compared with those in 160-gene experi-
ments but were optically resolvable in 3D with
high-resolution imaging and postimaging decon-
volution (Fig. 5A).
We observed that a higher percentage (40%)

of amplicons were filtered out in the 1020-gene
experiments by our error-rejection mechanism
(fig. S3H) in comparison with the four-gene ex-
periments (20%) (fig. S3L), indicating that a more
frequent initial color-misassignment potentially
resulted from amplicon merging or optical reso-
lution and further demonstrating the importance
of our designed error-rejection mechanism.
Crucially, despite the read loss, we successfully
clustered single cells of the imaging area into
15 annotated cell types and one unclassified type
using 1020 genes and the same data analysis pipe-
line from the focused 160 gene probe set (Fig. 5,
B and C, and fig. S13). Three new cell types were
identified in addition to the 12 cell types detected
by 160 genes (Fig. 5B): eL6 was resolved into
two subtypes (eL6-1 and eL6-2), a previously
uncharacterized hippocampal excitatory subtype
(HPC) was identified, and microglial cells were
cleanly identified with an expansion of non-
neuronal cell type markers in the 1020-gene set.
Beyond those advances, the 1020-gene findings

also successfully reproduced the cell types (and
their spatial patterning) from the 160-gene find-
ings and further allowed discovery of multiple
new gene markers for each cell type (for example,
3110035E14Rik for deep layers, Cnot6l for Sst
neurons, and Cplx1 for Pvalb neurons) (Fig. 5D
and fig. S13). These molecularly defined cell
types were highly reproducible between biolog-
ical replicates for 1020-gene detection and were
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Fig. 5. Simultaneous mapping of 1020 genes in V1 by STARmap. (A) Input fluorescence data.
(Left) Maximum-intensity projection of the first sequencing round for 1020 gene experiment, showing
all four channels simultaneously. Yellow square, zoom region. Scale bar, 100 mm. (Right) Zoom into a
single cell showing spatial arrangement of amplicons in three dimensions across six sequencing
rounds. (B) Joint UMAP plot showing all excitatory (HPC, eL2/3, eL4, eL5, eL6-1, and eL6-2), non-
neuronal (Smc, Other, Olig, Micro, Endo, and Astro), and inhibitory (PVALB, SST, VIP, and NPY) cell
types. (C) Plot of all differentially expressed genes across every cluster, with P < 10−12 and log fold
change > 1.5. (D) Spatial map of all excitatory, non-neuronal, and inhibitory cell types in visual cortex
using the same color code of (B). HPC, hippocampus; Smc, smooth muscle cells; Other, other
unclassified cells; Oligo, oligodendrocytes; Micro, microglia; Endo, endothelia cells; Astro, astrocytes.
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concordant with published single-cell RNA se-
quencing results (fig. S14). We further assessed
the possibility of scaling up STARmap to ac-
commodate higher gene numbers; although the
STARmap scheme can encode and decode more
than 1 million codes and the physical volume of
mammalian cells is not limiting for amplification
of more than 1000 genes (fig. S15), the 1020-gene
experiments approached the upper limit of the
optical volume of cells (fig. S15E); for those cases
in which more genes are needed, STARmap

may cover the whole transcriptome with more se-
quencing rounds of serial 1000-gene detection,
or via optical resolution enhanced with super-
resolution microscopy (38, 39) or the physical swell-
ing typical of the hydrogel-tissue chemistries (14, 19).

Adapting STARmap to thick tissue
blocks for 3D analyses

In neuroscience, addressing the 3D complexity
of both neurons and neural circuits has gener-
ally required the development and use of thick

tissue blocks or fully intact brains for functional
and structural readouts, including electrophysio-
logy, imaging of activity, and analysis of mor-
phology and connectivity. Therefore, for linking
these readout measures from intact or semi-
intact tissue preparations with cellular-resolution
gene expression readouts from the very same
preparations, methods of 3D spatial transcrip-
tomic analysis in thick tissues have long been
sought in order to achieve datastream regis-
tration as well as preserve 3D morphology and
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Fig. 6. 3D architecture of cell types in visual
cortex volumes. (A) Volumetric STARmapping
via sequential SEDAL gene readout. Using a
modified STARmap procedure (fig. S16) and
cyclic gene readout (four genes in each cycle),
large tissue volumes can be rapidly mapped at
single-cell resolution without oversampling each
amplicon. (B) Validation showing specific
STARMAP labeling of YFP-expressing neurons
(from transgenic Thy1::YFP mouse line) in
3D cortical volume. Scale bar, 0.5 mm.
(C) Representative labeling of (left) major cell
types, (left center) layer-specific markers,
(right center) inhibitory markers, and (right)
activity-regulated genes acquired over
multiple rounds in visual cortex STARmap
volumes. (D) Per-cell expression matrix of
28 genes from 32,845 single cells from one
volume clustered into multiple excitatory,
inhibitory, and non-neuronal cell types,
z-scored across genes for each cell in order
to normalize for mean differences in total
signal between cells. Columns are sorted by
order of sequencing rounds as conducted, in
groups of four. (E) (Top) Spatial histograms of
excitatory, inhibitory, and non-neuronal
cell types, using same color labels as (D).
Cells were counted in 5-mm bins in a 2D
max-projection and plotted in cell-count-per-
micrometer units as a function of distance
from the corpus callosum (cc) to the pia,
averaged across the bins perpendicular to
the cortical layers. (Bottom) Plot of
max-projected cell locations color-coded by
cluster as in (D). (F) Spatial distribution of
each cell type (excitatory, inhibitory, and
non-neuronal) and subtypes in three
dimensions. Each dot represents a single
cell; spatial dimensions are in micrometers.
(G) Average nearest-neighbor distances
computed in three dimensions between all
excitatory cells (Excite) and each inhibitory cell
type. For self-comparisons, the nearest neigh-
bor was defined as the closest nonidentical cell;
persistent self-correlation reveals self-clustering
of inhibitory subtypes. (H) Same distances as
(H) but using shuffled (randomized) cell-type
labels. (I) Nearest-neighbor distances com-
puted in three dimensions between each inhib-
itory cell of a certain type and any member of
the same type (Inhib → Inhib, eg VIP → VIP)
or any excitatory neuron (Inhib → Excite).
**** P < 0.0001, Wilcoxon rank-sum test.
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to obtain readouts from very much larger cell
numbers (2). The initial experiments were car-
ried out in brain slices no more than one cell
body thick; we therefore next developed and
tested STARmap to overcome limitations in
diffusional access and imaging throughput for
large tissue volumes, with a modified strategy for
linearly reading out gene expression at cellular
resolution so as to enable high-throughput mo-
lecular analysis in tissue volumes (Fig. 6A and
fig. S16). Specificity and penetration depth of
large-volume STARmap were tested initially by
using Thy1::YFPmouse brains, in which STARmap
successfully detected yellow fluorescent protein
(YFP) mRNA across 150 mm of tissue thickness
and specifically colocalized YFP protein andmRNA
at single-cell resolution (Fig. 6B) without label-
ing the tens of thousands of interspersed neigh-
boring cells.
We then extended the spatial cell-typing of

mouse V1 to more than 30,000 cells across
volumes spanning all six layers and the corpus
callosum. Using a curated gene set including 23
cell-type markers and five ARGs read out over
seven cycles of linear SEDAL sequencing (Fig. 6,
C and D, and fig. S17), we applied K-means clus-
tering of marker genes (supplementary materials,
materials and methods) for each cell type (recov-
ering 11 cell types corresponding to the majority
of those extracted by the 160-gene experiment).
We found that 3D patterning of the 11 cell types
(Fig. 6, E and F) was consistent with the 160-
gene thin-section tissue findings but provided
an accurate and quantitative profiling of cellular
distribution across space, with much larger cell
numbers. As reflected by both spatial-histogram
(Fig. 6E) and correlational analyses (fig. S17B),
excitatory subtypes exhibited a layered gradient
distribution, with the spatial density of each sub-
type decaying across space into adjacent layers.
By contrast, inhibitory subtypes were dispersed,
albeit with layer preferences exhibited by the Vip
subtype (largely located in layer 2/3) and the Sst
and Pvalb subtypes (in layers 4 and 5). Non-
neuronal cells were largely seen in layer 1 and
white matter.
To discover yet-finer volumetric patterns, we

further analyzed the distribution of distances
from each individual cell from each sequencing-
defined subtype to its nearest neighbors, find-
ing unexpectedly that the nearest neighbor of
any inhibitory neuron tended to be its own
subtype, rather than excitatory neurons or other
inhibitory subtypes (Fig. 6G). If inhibitory neu-
rons were randomly dispersed among the more
abundant excitatory neurons in a purely salt-
and-pepper distribution, the distance between
inhibitory neurons would be larger than that
from inhibitory to excitatory neurons (Fig. 6H).
Instead, the actual intrasubtype distance of in-
hibitory neurons was much shorter (~15 mm,
which is equivalent to the size of a single neu-
ron, indicating direct somatic juxtaposition)
(Fig. 6I), revealing a short-range self-clustering
organization of inhibitory subtypes across vol-
umes that could only be accurately measured in
three but not in two dimensions (fig. S18A). When

guided by this initial STARmap observation,
evidence for such patterning could be also ob-
tained in transgenic mouse lines (fig. S18, B and
C). This discovery bears considerable relevance to
previous functional work; for example, electro-
physiological studies have suggested that inhib-
itory neurons in spatial proximity tend to be
connected by electric (gap) junctions important
for setting up synchronized firing patterns
(40, 41), and in vivo imaging has suggested that
inhibitory-neuron groupings in visual cortex could
sharpen visual responses (42).

Discussion

STARmap defines a platform for 3D in situ tran-
scriptomics, enabled by state-of-the-art DNA li-
brary preparation and sequencing in an HTC
formulation. Here, STARmap was shown to be
applicable to the study of molecularly defined
cell types and activity-regulated gene expression
in mouse cortex and to be scalable to larger 3D
tissue blocks so as to visualize short- and long-
range spatial organization of cortical neurons
on a volumetric scale not previously accessible.
In future work, STARmap may also be adapted
to longer sequencing lengths or higher gene num-
bers; there is no intrinsic limit to the number of
genes or RNA species that can be simultaneously
and quantitatively accessed with STARmap (fig.
S15); STARmap may also be capable of integrat-
ing cell-type information with single-neuron mor-
phology and projection anatomy (for example, by
means of Brainbow and MAPseq) (43, 44) as well
as with in vivo neural activity imaging and
electrophysiology. This platform can also be gen-
eralized to study other heterogeneous cell popula-
tions in diverse tissues across the body, although
the brain poses special challenges well suited to
STARmap analysis. For example, the polymor-
phic ARG expression observed across different
cell types is likely to depend on both intrinsic
cell-biological properties (such as signal trans-
duction pathway-component expression) and
on extrinsic properties such as neural circuit
anatomy that routes external sensory informa-
tion to different cells (here, in visual cortex). In
general, it may not be possible to fully define
brain cell typology independent of such 3D anat-
omy as well as activity patterns exhibited and
experienced by cells during behavior; the nature
of input and output communication pathways for
the cells in question in fact can form the founda-
tion for defining cell types (35, 36). Toward
this end, in situ transcriptomics exemplified
by STARmap can effectively link this imaging-
basedmolecular information with complementary
cellular-resolution datastreams describing anat-
omy, natural activity, and causal importance, thus
promising to fundamentally deepen our under-
standing of brain function and dysfunction (2).

Methods summary

All animal procedures followed animal care
guidelines approved by Stanford University’s
Administrative Panel on Laboratory Animal Care
(APLAC) and guidelines of the National Institutes
of Health. For thin sections, animals were anes-

thetized and rapidly decapitated; the brain tis-
sues were sliced by use of a cryostat. For thick
sections, animals were anesthetized and trans-
cardially perfused with paraformaldehyde; the
brain tissues were sliced by use of a vibratome.
In STARmap experiments, tissues were hybridized
with SNAIL probes, enzymatically amplified,
hydrogel embedded, and sequentially imaged
by using the SEDAL process and a confocal mi-
croscope. The resulting image datasets were
registered across multiple cycles by using the
positions of all amplicons in each cycle and
decoded. For cell typing and single-cell gene
expression analyses, the amplicons were attrib-
uted to individual cells based on segmentation
images of fluorescent Nissl staining. All the
detailed procedures for the experiments and data
analyses are described in the supplementary
materials.
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Three-dimensional intact-tissue sequencing of single-cell transcriptional states
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Transcriptome mapping in the 3D brain
RNA sequencing samples the entire transcriptome but lacks anatomical information. In situ hybridization, on the other
hand, can only profile a small number of transcripts. In situ sequencing technologies address these shortcomings but
face a challenge in dense, complex tissue environments. Wang et al. combined an efficient sequencing approach
with hydrogel-tissue chemistry to develop a multidisciplinary technology for three-dimensional (3D) intact-tissue RNA
sequencing (see the Perspective by Knöpfel). More than 1000 genes were simultaneously mapped in sections of
mouse brain at single-cell resolution to define cell types and circuit states and to reveal cell organization principles.
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